Advanced search
Start date
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

On the classification of fog computing applications: A machine learning perspective

Full text
Guevara, Judy C. [1] ; Torres, Ricardo da S. [2] ; da Fonseca, Nelson L. S. [1]
Total Authors: 3
[1] Univ Estadual Campinas, Inst Comp, BR-13083852 Campinas, SP - Brazil
[2] Norwegian Univ Sci & Technol NTNU, Dept ICT & Nat Sci, Alesund - Norway
Total Affiliations: 2
Document type: Journal article
Web of Science Citations: 0

Currently, Internet applications running on mobile devices generate a massive amount of data that can be transmitted to a Cloud for processing. However, one fundamental limitation of a Cloud is the connectivity with end devices. Fog computing overcomes this limitation and supports the requirements of time-sensitive applications by distributing computation, communication, and storage services along the Cloud to Things (C2T) continuum, empowering potential new applications, such as smart cities, augmented reality (AR), and virtual reality (VR). However, the adoption of Fog-based computational resources and their integration with the Cloud introduces new challenges in resource management, which requires the implementation of new strategies to guarantee compliance with the quality of service (QoS) requirements of applications. In this context, one major question is how to map the QoS requirements of applications on Fog and Cloud resources. One possible approach is to discriminate the applications arriving at the Fog into Classes of Service (CoS). This paper thus introduces a set of CoS for Fog applications which includes, the QoS requirements that best characterize these Fog applications. Moreover, this paper proposes the implementation of a typical machine learning classification methodology to discriminate Fog computing applications as a function of their QoS requirements. Furthermore, the application of this methodology is illustrated in the assessment of classifiers in terms of efficiency, accuracy, and robustness to noise. The adoption of a methodology for machine learning-based classification constitutes a first step towards the definition of QoS provisioning mechanisms in Fog computing. Moreover, classifying Fog computing applications can facilitate the decision-making process for Fog scheduler. (AU)

FAPESP's process: 14/50715-9 - Characterizing and predicting biomass production in sugarcane and eucalyptus plantations in Brazil
Grantee:Rubens Augusto Camargo Lamparelli
Support type: Research Grants - Research Partnership for Technological Innovation - PITE
FAPESP's process: 16/50250-1 - The secret of playing football: Brazil versus the Netherlands
Grantee:Sergio Augusto Cunha
Support type: Research Projects - Thematic Grants
FAPESP's process: 17/20945-0 - Multi-user equipment approved in great 16/50250-1: local positioning system
Grantee:Sergio Augusto Cunha
Support type: Multi-user Equipment Program
FAPESP's process: 14/12236-1 - AnImaLS: Annotation of Images in Large Scale: what can machines and specialists learn from interaction?
Grantee:Alexandre Xavier Falcão
Support type: Research Projects - Thematic Grants
FAPESP's process: 13/50169-1 - Towards an understanding of tipping points within tropical South American biomes
Grantee:Ricardo da Silva Torres
Support type: Research Grants - Research Partnership for Technological Innovation - PITE
FAPESP's process: 13/50155-0 - Combining new technologies to monitor phenology from leaves to ecosystems
Grantee:Leonor Patricia Cerdeira Morellato
Support type: Research Program on Global Climate Change - University-Industry Cooperative Research (PITE)
FAPESP's process: 15/24494-8 - Communications and processing of big data in cloud and fog computing
Grantee:Nelson Luis Saldanha da Fonseca
Support type: Research Projects - Thematic Grants