Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Impedimetric electronic tongue based on molybdenum disulfide and graphene oxide for monitoring antibiotics in liquid media

Full text
Author(s):
Facure, Murilo Henrique M. [1, 2] ; Schneider, Rodrigo [1, 2] ; dos Santos, Danilo M. [2] ; Correa, Daniel S. [1, 2]
Total Authors: 4
Affiliation:
[1] Fed Univ Sao Carlos UFSCar, Ctr Exact Sci & Technol, Dept Chem, PPGQ, BR-13565905 Sao Carlos, SP - Brazil
[2] Embrapa Instrumentacao, Nanotechnol Natl Lab Agr LNNA, BR-13560970 Sao Carlos, SP - Brazil
Total Affiliations: 2
Document type: Journal article
Source: Talanta; v. 217, SEP 2020.
Web of Science Citations: 0
Abstract

Antibiotics are considered emerging pollutants which indiscriminate use has led to the development of antibiotic-resistant bacteria, while their improper disposal has caused adverse effects to the environment and human health. Thus, the development of devices or techniques capable of detecting antibiotics with high sensitivity, low detection limits, and reasonable cost becomes of prime importance. In this work, an electronic tongue (e-tongue) based on molybdenum disulfide (MoS2) and graphene oxide (GO) was developed and employed to detect four distinct antibiotics, namely cloxacillin benzathine, erythromycin, streptomycin sulfate, and tetracycline hydrochloride. The five sensing units of the e-tongue were obtained using the drop-casting method to modify gold interdigitated electrodes with MoS2 and GO. Using Principal Component Analysis to process the experimental data allowed the e-tongue to recognize samples contaminated with distinct antibiotics at varied concentrations from 0.5 to 5.0 nmol L-1. Analyses with real samples were also performed using river water and human urine and the electronic tongue was able to differentiate the samples at a nanomolar level. The proposed system represents a sensitive and low-cost alternative for antibiotic analyses in different liquid media. (AU)

FAPESP's process: 17/20973-4 - Coaxial electrospun nanofibers based on chitosan for controlled release of antibiotics and periodontic lesion treatment
Grantee:Danilo Martins dos Santos
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 17/10582-8 - Production and characterization of graphene quantum dots and their application in chemical sensors
Grantee:Murilo Henrique Moreira Facure
Support Opportunities: Scholarships in Brazil - Doctorate
FAPESP's process: 18/18468-2 - Molybdenum disulphide (MoS2) nanostructures syntheses methodologies and evaluation of their potential application in pollutants adsorption systems
Grantee:Rodrigo Schneider
Support Opportunities: Scholarships in Brazil - Doctorate
FAPESP's process: 17/12174-4 - Development of hybrid polymer nanofibers for agricultural applications
Grantee:Daniel Souza Corrêa
Support Opportunities: Regular Research Grants