Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Labeled Cycle Graph for Transposition and Indel Distance

Full text
Author(s):
Alexandrino, Alexsandro Oliveira [1] ; Oliveira, Andre Rodrigues [1] ; Dias, Ulisses [2] ; Dias, Zanoni [1]
Total Authors: 4
Affiliation:
[1] Univ Estadual Campinas, Inst Comp, 1251 Albert Einstein Ave, BR-13083852 Campinas - Brazil
[2] Univ Estadual Campinas, Sch Technol, Limeira - Brazil
Total Affiliations: 2
Document type: Journal article
Source: JOURNAL OF COMPUTATIONAL BIOLOGY; NOV 2021.
Web of Science Citations: 0
Abstract

In the comparative genomics field, one way to infer the evolutionary distance between two organisms of related species is by finding the minimum number of large-scale mutations, called genome rearrangements, that transform one genome into the other. This number is referred to as the rearrangement distance. Since problems in this area emerged in the mid-1990s, several genome rearrangements have been proposed. Rearrangements that do not alter the genome content are called conservative, and in this group we have the following: the reversal, which inverts a segment of the genome; the transposition, which exchanges two consecutive segments; and the double cut and join, which cuts two different pairs of adjacent blocks and joins them differently. Seminal works compared genomes sharing the same set of conserved blocks, but nowadays, researchers started looking at genomes with unequal gene content, by allowing the use of nonconservative rearrangements such as insertion and deletion (jointly called indel). The transposition distance and the transposition and indel distance are both NP-hard. We investigate the transposition and indel distance and present a structure called labeled cycle graph, representing an instance of rearrangement distance problems for genomes with unequal gene content. This structure is used to devise a lower bound and a 2-approximation algorithm for the transposition and indel distance.</p> (AU)

FAPESP's process: 17/12646-3 - Déjà vu: feature-space-time coherence from heterogeneous data for media integrity analytics and interpretation of events
Grantee:Anderson de Rezende Rocha
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 13/08293-7 - CCES - Center for Computational Engineering and Sciences
Grantee:Munir Salomao Skaf
Support Opportunities: Research Grants - Research, Innovation and Dissemination Centers - RIDC
FAPESP's process: 15/11937-9 - Investigation of hard problems from the algorithmic and structural stand points
Grantee:Flávio Keidi Miyazawa
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 19/27331-3 - Sorting by genome rearrangements problems
Grantee:André Rodrigues Oliveira
Support Opportunities: Scholarships in Brazil - Post-Doctoral