Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

aspofungin Inhibits Mixed Biofilms of Candida albicans and Methicillin-Resistant Staphylococcus aureus and Displays Effectiveness in Coinfected Galleria mellonella Larva

Full text
Author(s):
Scheunemann, Gaby [1] ; Fortes, Bruna N. [1] ; Lincopan, Nilton [1] ; Ishida, Kelly [1]
Total Authors: 4
Affiliation:
[1] Univ Sao Paulo, Inst Biomed Sci, Sao Paulo - Brazil
Total Affiliations: 1
Document type: Journal article
Source: MICROBIOLOGY SPECTRUM; v. 9, n. 2 OCT 2021.
Web of Science Citations: 0
Abstract

Candida albicans and Staphylococcus aureus are pathogens commonly isolated from bloodstream infections worldwide. While coinfection by both pathogens is associated with mixed biofilms and more severe clinical manifestations, due to the combined expression of virulence and resistance factors, effective treatments remain a challenge. In this study, we evaluated the activity of echinocandins, especially caspofungin, against mixed biofilms of C. albicans and methicillin-resistant (MRSA) or methicillin-susceptible S. aureus (MSSA) and their effectiveness in vivo using the Galleria mellonella coinfection model. Although caspofungin (CAS) and micafungin (MFG) inhibited the mixed biofilm formation, with CAS exhibiting inhibitory activity at lower concentrations, only CAS was active against preformed mixed biofilms. CAS significantly decreased the total biomass of mixed biofilms at concentrations of >= 2 mg/ml, whereas the microbial viability was reduced at high concentrations (32 to 128 mg/ml), leading to fungus and bacterium cell wall disruption and fungal cell enlargement. Notably, CAS (20 or 50 mg/kg of body weight) treatment led to an increased survival and improved outcomes of G. mellonella larvae coinfected with C. albicans and MRSA, since a significant reduction of fungal and bacterial burden in larval tissues was achieved with induction of granuloma formation. Our results reveal that CAS can be a therapeutic option for the treatment of mixed infections caused by C. albicans and S. aureus, supporting additional investigation. IMPORTANCE Infections by microorganisms resistant to antimicrobials is a major challenge that leads to high morbidity and mortality rates and increased time and cost with hospitalization. It was estimated that 27 to 56% of bloodstream infections by C. albicans are polymicrobial, with S. aureus being one of the microorganisms commonly coisolated worldwide. About 80% of infections are associated with biofilms by single or mixed species that can be formed on invasive medical devices, e.g., catheter, and are considered a dissemination source. The increased resistance to antimicrobials in bacterial and fungal cells when they are in biofilms is the most medically relevant behavior that frequently results in therapeutic failure. Although there are several studies evaluating treatments for polymicrobial infections associated or not with biofilms, there is still no consensus on an effective antimicrobial therapy to combat the coinfection by bacteria and fungi. (AU)

FAPESP's process: 17/26076-4 - Effect of antimicrobials on the polymicrobial infection by Aspergillus fumigatus and Pseudomonas aeruginosa
Grantee:Bruna Nakanishi Fortes
Support Opportunities: Scholarships in Brazil - Scientific Initiation
FAPESP's process: 17/19374-9 - Echinocandins in the control of infections associated to polymicrobial biofilms of Candida spp. and bacteria such as Stapholococcus aureus and Pseudomonas aeruginosa
Grantee:Kelly Ishida
Support Opportunities: Regular Research Grants