| Full text | |
| Author(s): |
Souza, Fernanda L.
;
Linares, Jose J.
;
Ferreira, Neidenei G.
;
Lanza, Marcos R., V
Total Authors: 4
|
| Document type: | Journal article |
| Source: | CHEMELECTROCHEM; v. 9, n. 11, p. 7-pg., 2022-06-14. |
| Abstract | |
This work aims to demonstrate the importance of coupling different degradation processes for the removal of the commercial herbicide Halosulfuron-Methyl (HSM). Using anode oxidation (AO) on boron-doped diamond as the base process; cathodically produced H2O2 (AO/H2O2), UV light (AO/UV), AO/UV/H2O2, electro-Fenton and photoelectron Fenton (PEF) are employed as hybrid processes for HSM degradation. All hybrid processes employed in the study exhibited synergism with AO, and the UV-irradiated processes presented an outstanding performance. In particular, the AO/UV/H2O2 process exhibited 90 % mineralization after 3 h of treatment, whereas the PEF process exhibited a complete removal of HSM after 45 min of treatment. In addition to the noticeable advantages of hybridization, the application of higher current densities is found to accelerate the degradation/mineralization of the compound of interest, although the process tends to be more energy demanding. In such a case, the use of a hybrid treatment process coupled to UV-irradiation allows one to mitigate this constraint while contributing toward obtaining higher mineralization degrees. The degradation/mineralization of more concentrated solutions is, however, found to occur more sluggishly under the treatment mechanisms investigated here, requiring longer times, although the process is noticeably more efficient in photo-irradiated processes, which recorded current efficiencies of above 100 %. (AU) | |
| FAPESP's process: | 17/10118-0 - Study and application of electrochemical technology for the analysis and degradation of endocrine interferents: materials, sensors, processes and scientific dissemination |
| Grantee: | Marcos Roberto de Vasconcelos Lanza |
| Support Opportunities: | Research Projects - Thematic Grants |
| FAPESP's process: | 14/50945-4 - INCT 2014: National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactivies |
| Grantee: | Maria Valnice Boldrin |
| Support Opportunities: | Research Projects - Thematic Grants |
| FAPESP's process: | 13/15000-6 - Herbicides degradation applied to rice culture by electro-oxidative process |
| Grantee: | Fernanda de Lourdes Souza |
| Support Opportunities: | Scholarships in Brazil - Post-Doctoral |