Advanced search
Start date
Betweenand


A 3.5-Approximation Algorithm for Sorting by Intergenic Transpositions

Full text
Author(s):
Oliveira, Andre Rodrigues ; Jean, Geraldine ; Fertin, Guillaume ; Brito, Klairton Lima ; Dias, Ulisses ; Dias, Zanoni ; MartinVide, C ; VegaRodriguez, MA ; Wheeler, T
Total Authors: 9
Document type: Journal article
Source: ALGORITHMS FOR COMPUTATIONAL BIOLOGY (ALCOB 2020); v. 12099, p. 13-pg., 2020-01-01.
Abstract

Genome Rearrangements affect large stretches of genomes during evolution. One of the most studied genome rearrangement is the transposition, which occurs when a sequence of genes is moved to another position inside the genome. Mathematical models have been used to estimate the evolutionary distance between two different genomes based on genome rearrangements. However, many of these models have focused only on the (order of the) genes of a genome, disregarding other important elements in it. Recently, researchers have shown that considering existing regions between each pair of genes, called intergenic regions, can enhance the distance estimation in realistic data. In this work, we study the transposition distance between two genomes, but we also consider intergenic regions, a problem we name Sorting Permutations by Intergenic Transpositions (SbIT). We show that this problem is NP-hard and propose a 3.5-approximation algorithm for it. (AU)

FAPESP's process: 13/08293-7 - CCES - Center for Computational Engineering and Sciences
Grantee:Munir Salomao Skaf
Support Opportunities: Research Grants - Research, Innovation and Dissemination Centers - RIDC
FAPESP's process: 17/12646-3 - Déjà vu: feature-space-time coherence from heterogeneous data for media integrity analytics and interpretation of events
Grantee:Anderson de Rezende Rocha
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 15/11937-9 - Investigation of hard problems from the algorithmic and structural stand points
Grantee:Flávio Keidi Miyazawa
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 17/16246-0 - Sensitive media analysis through deep learning architectures
Grantee:Sandra Eliza Fontes de Avila
Support Opportunities: Regular Research Grants