Advanced search
Start date
Betweenand


Collaborative Filtering Matches Decision Templates: A Practical Approach to Estimate Predictions

Full text
Author(s):
Martins, Guilherme Brandao ; Papa, Joao Paulo ; DeCarvalho, BM ; Goncalves, LMG
Total Authors: 4
Document type: Journal article
Source: 2022 35TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2022); v. N/A, p. 6-pg., 2022-01-01.
Abstract

Collaborative Filtering stands as an underlying strategy to reasonably deal with large-scale problems like scalability and high sparsity. In the classifier fusion context, one could benefit from adopting such a strategy to learn decision templates effectively for the sake of computation efficiency. This paper introduces a framework that explores collaborative filtering-based latent factors models for fast decision template generation, assuming it has a sparse matrix structure. Experiments conducted over five general-purpose public datasets and statistically assessed have demonstrated its feasibility for building decision templates under low sparsity conditions and datasets labeled with fewer classes. Under such conditions, the proposed framework showed competitive recognition rates, significantly reducing computational costs, particularly when distance-based classifiers are employed for ensemble learning purposes. (AU)

FAPESP's process: 13/07375-0 - CeMEAI - Center for Mathematical Sciences Applied to Industry
Grantee:Francisco Louzada Neto
Support Opportunities: Research Grants - Research, Innovation and Dissemination Centers - RIDC
FAPESP's process: 14/12236-1 - AnImaLS: Annotation of Images in Large Scale: what can machines and specialists learn from interaction?
Grantee:Alexandre Xavier Falcão
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 19/07665-4 - Center for Artificial Intelligence
Grantee:Fabio Gagliardi Cozman
Support Opportunities: Research Grants - Research Program in eScience and Data Science - Research Centers in Engineering Program