Advanced search
Start date
Betweenand


3DBGrowth: volumetric vertebrae segmentation and reconstruction in magnetic resonance imaging

Full text
Author(s):
Ramos, Jonathan S. ; Cazzolato, Mirela T. ; Faical, Bruno S. ; Nogueira-Barbosa, Marcello H. ; Traina, Caetano, Jr. ; Traina, Agma J. M. ; IEEE
Total Authors: 7
Document type: Journal article
Source: 2019 IEEE 32ND INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS); v. N/A, p. 6-pg., 2019-01-01.
Abstract

Segmentation of medical images is critical for making several processes of analysis and classification more reliable. With the growing number of people presenting back pain and related problems, the semi-automatic segmentation and 3D reconstruction of vertebral bodies became even more important to support decision making. A 3D reconstruction allows a fast and objective analysis of each vertebrae condition, which may play a major role in surgical planning and evaluation of suitable treatments. In this paper, we propose 3DBGrowth, which develops a 3D reconstruction over the efficient Balanced Growth method for 2D images. We also take advantage of the slope coefficient from the annotation time to reduce the total number of annotated slices, reducing the time spent on manual annotation. We show experimental results on a representative dataset with 17 MRI exams demonstrating that our approach significantly outperforms the competitors and, on average, only 37% of the total slices with vertebral body content must be annotated without losing performance/accuracy. Compared to the state-of-the-art methods, we have achieved a Dice Score gain of over 5% with comparable processing time. Moreover, 3DBGrowth works well with imprecise seed points, which reduces the time spent on manual annotation by the specialist. (AU)

FAPESP's process: 18/24414-2 - A framework for integration of feature extraction techniques and complex databases for MIVisBD
Grantee:Mirela Teixeira Cazzolato
Support Opportunities: Scholarships in Brazil - Technical Training Program - Technical Training
FAPESP's process: 17/23780-2 - Content-based retrieval of medical images to aid the clinical decision using radiomics
Grantee:Jonathan da Silva Ramos
Support Opportunities: Scholarships in Brazil - Doctorate
FAPESP's process: 18/06228-7 - Detection of patterns and anomalies in medical data using Mathematical Modeling
Grantee:Bruno Squizato Faiçal
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 16/17078-0 - Mining, indexing and visualizing Big Data in clinical decision support systems (MIVisBD)
Grantee:Agma Juci Machado Traina
Support Opportunities: Research Projects - Thematic Grants