Advanced search
Start date
Betweenand


METAFORE: algorithm selection for decomposition-based forecasting combinations

Full text
Author(s):
Santos, Moises ; de Carvalho, Andre ; Soares, Carlos
Total Authors: 3
Document type: Journal article
Source: INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS; v. N/A, p. 14-pg., 2024-05-29.
Abstract

Time series forecasting is an important tool for planning and decision-making. Considering this, several forecasting algorithms can be used, with results depending on the characteristics of the time series. The recommendation of the most suitable algorithm is a frequent concern. Metalearning has been successfully used to recommend the best algorithm for a time series analysis task. Additionally, it has been shown that decomposition methods can lead to better results. Based on previously published studies, in the experiments carried out, time series components were used. This work proposes and empirically evaluates METAFORE, a new time series forecasting approach that uses seasonal trend decomposition with Loess and metalearning to recommend suitable algorithms for time series forecasting combinations. Experimental results show that METAFORE can obtain a better predictive performance than single models with statistical significance. In the experiments, METAFORE also outperformed models widely used in the state-of-the-art, such as the long short-term memory neural network architectures, in more than 70%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$70\%$$\end{document} of the time series tested. Finally, the results show that the joint use of metalearning and time series decomposition provides a competitive approach to time series forecasting. (AU)

FAPESP's process: 13/07375-0 - CeMEAI - Center for Mathematical Sciences Applied to Industry
Grantee:Francisco Louzada Neto
Support Opportunities: Research Grants - Research, Innovation and Dissemination Centers - RIDC