Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Direct Synthesis of Ag Nanoparticles Incorporated on a Mesoporous Hybrid Material as a Sensitive Sensor for the Simultaneous Determination of Dihydroxybenzenes Isomers

Full text
Author(s):
Canevari, Thiago C. [1] ; Raymundo-Pereira, Paulo A. [1] ; Landers, Richard [2] ; Machado, Sergio A. S. [1]
Total Authors: 4
Affiliation:
[1] State Univ Sao Paulo, Inst Chem, BR-13560970 Sao Carlos, SP - Brazil
[2] Univ Estadual Campinas, Gleb Wataghin Inst Phys, Campinas, SP - Brazil
Total Affiliations: 2
Document type: Journal article
Source: European Journal of Inorganic Chemistry; v. 2013, n. 33, p. 5746-5754, NOV 12 2013.
Web of Science Citations: 16
Abstract

This paper describes the synthesis, characterization, and applications of a mesoporous silica/ multiwalled carbon nanotube (SiO2/MWCNT) hybrid material, which was obtained by a sol-gel process and decorated with silver nanoparticles (AgNPs) ranging in size from 5 to 8 nm. The AgNPs were prepared directly on the surface of the SiO2/MWCNTs material by using N,N-dimethylformamide (DMF) as the reducing agent, and the resulting material was designated Ag/SiO2/MWCNT. The Ag/SiO2/MWCNT material was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HR-TEM), and X-ray photoelectron spectroscopy (XPS). A glassy carbon electrode, modified with the Ag/SiO2/MWCNT material, was used in the development of a sensitive electrochemical sensor for the determination of hydroquinone and catechol in the presence of resorcinol by squarewave voltammetry. Well-defined and separate oxidation peaks were observed in phosphate buffer solution (PBS) at pH 7. The Ag/SiO2/MWCNT-modified electrode exhibited high sensitivity for the simultaneous determination of hydroquinone and catechol in the presence of resorcinol, and the limits of detection for hydroquinone and catechol are 0.0117 and 0.0121 M, respectively. No significant interference was seen for 2,6-dichloroindophenol, phenol, 4-nitrophenol, and nitrite ions in the detection of dihydroxybenzenes. Our study demonstrates that the resultant Ag/SiO2/MWCNT-modified electrode can be used for hydroquinone and catechol detection in the presence of resorcinol and other potentially interfering materials in river water samples. (AU)

FAPESP's process: 12/17689-9 - Preparation and characterization of bifunctional-nanostructured surfaces of Au-Pt obtained via templates for application in sensors and biosensors
Grantee:Paulo Augusto Raymundo Pereira
Support Opportunities: Scholarships in Brazil - Doctorate
FAPESP's process: 11/23047-7 - Development of an electrochemical biosensor based on mesoporous silicon containing carbon nanotubes obtained by a sol-gel process. Electrochemical determination of pesticides.
Grantee:Thiago da Cruz Canevari
Support Opportunities: Scholarships in Brazil - Post-Doctoral