Advanced search
Start date
Betweenand

Nonlinear nanophotonics circuits: building blocks for optical frequency synthesis, filtering and signal processing

Abstract

The recent development of active and passive photonic components has revolutionized spectroscopy techniques, compact sources of light of high coherence, data transmission and even redefined the optical computing paradigm. In this proposal we aim to explore the collective and multimodal behavior that appears in optical microcavities as a consequence of nonlinear effects of electronic and mechanical origin. These non-linear processes will be explored for a new generation of nano-photonic devices whose applications range from spectroscopy techniques to the creation of fundamental blocks to solve specialized computing problems -- such as generation of genuinely random number sequences and optimization. (AU)

Articles published in Agência FAPESP Newsletter about the research grant:
Model describes interactions between light and mechanical vibration in microcavities 
Articles published in other media outlets (17 total):
More itemsLess items
Science Bulletin: Model describes interactions between light and mechanical vibration in microcavities (03/Mar/2021)
Bio1000 (China): 模型描述了微腔中光与机械振动之间的相互作用 (03/Mar/2021)
Phys.Org (Reino Unido): Model describes interactions between light and mechanical vibration in microcavities (02/Mar/2021)
Bioengineer (Reino Unido): Model describes interactions between light and mechanical vibration in microcavities (02/Mar/2021)
Science Codex: Model describes interactions between light and mechanical vibration in microcavities (02/Mar/2021)
Scienmag Science Magazine (Reino Unido): Model describes interactions between light and mechanical vibration in microcavities (02/Mar/2021)
QNewsHub (Índia): Model describes interactions between light and mechanical vibration in microcavities (02/Mar/2021)
Dagold Info (Nigéria): Model describes interactions between light and mechanical vibration in microcavities (02/Mar/2021)
TechCodex (Índia): Model describes interactions between light and mechanical vibration in microcavities (02/Mar/2021)
Biotech World: Model describes interactions between light and mechanical vibration in microcavities (02/Mar/2021)
Gamers Grade: Model describes interactions between light and mechanical vibration in microcavities (02/Mar/2021)
Revista Analytica online: Modelo criado na Unicamp descreve interação entre luz e vibração mecânica em microcavidades (15/Jan/2021)
GPS da Notícia: Brasileiros explicam interação entre luz e vibração mecânica (11/Jan/2021)
Saense: Modelo criado na Unicamp descreve interação entre luz e vibração mecânica em microcavidades (11/Jan/2021)
Saber Atualizado: Modelo criado na Unicamp descreve interação entre luz e vibração mecânica em microcavidades (09/Jan/2021)
JC Notícias (São Paulo, SP): Modelo criado na Unicamp descreve interação entre luz e vibração mecânica em microcavidades (07/Jan/2021)
FOCEP Brasil: Modelo criado na Unicamp descreve interação entre luz e vibração mecânica em microcavidades (07/Jan/2021)

Scientific publications (9)
(References retrieved automatically from Web of Science and SciELO through information on FAPESP grants and their corresponding numbers as mentioned in the publications by the authors)
JARSCHEL, PAULO F.; LAMILLA, ERICK; ESPINEL, YOVANNY A. V.; ALDAYA, IVAN; PITA, JULIAN L.; GIL-MOLINA, ANDRES; WIEDERHECKER, GUSTAVO S.; DAINESE, PAULO. Intermodal Brillouin scattering in solid-core photonic crystal fibers. APL PHOTONICS, v. 6, n. 3 MAR 1 2021. Web of Science Citations: 0.
ZURITA, ROBERTO O.; WIEDERHECKER, GUSTAVO S.; MAYER ALEGRE, THIAGO P. Designing of strongly confined short-wave Brillouin phonons in silicon waveguide periodic lattices. Optics Express, v. 29, n. 2, p. 1736-1748, JAN 18 2021. Web of Science Citations: 0.
CARVALHO, N. C.; BENEVIDES, R.; MENARD, M.; WIEDERHECKER, G. S.; FRATESCHI, N. C.; MAYER ALEGRE, T. P. High-frequency GaAs optomechanical bullseye resonator. APL PHOTONICS, v. 6, n. 1 JAN 1 2021. Web of Science Citations: 0.
PRIMO, ANDRE G.; CARVALHO, NATALIA C.; KERSUL, CAUE M.; FRATESCHI, NEWTON C.; WIEDERHECKER, GUSTAVO S.; MAYER ALEGRE, THIAGO P. Quasinormal-Mode Perturbation Theory for Dissipative and Dispersive Optomechanics. Physical Review Letters, v. 125, n. 23 DEC 2 2020. Web of Science Citations: 1.
INGA, MARVYN; FUJII, LAIS; DA SILVA FILHO, JOSE MARIA C.; QUINTINO PALHARES, JOAO HENRIQUE; FERLAUTO, ANDRE SANTAROSA; MARQUES, FRANCISCO C.; MAYER ALEGRE, THIAGO P.; WIEDERHECKER, GUSTAVO. Alumina coating for dispersion management in ultra-high Q microresonators. APL PHOTONICS, v. 5, n. 11 NOV 1 2020. Web of Science Citations: 0.
INGA, M. Dispersion tailoring in wedge microcavities for Kerr comb generation. OPTICS LETTERS, v. 45, n. 12 JUN 15 2020. Web of Science Citations: 0.
MELO, EMERSON G.; RIBEIRO, ANA L. A.; BENEVIDES, RODRIGO S.; ZUBEN, V, ANTONIO A. G.; PUYDINGER DOS SANTOS, V, MARCOS; SILVA, ALEXANDRE A.; WIEDERHECKER, GUSTAVO S.; ALEGRE, THIAGO P. M. Bright and Vivid Diffractive-Plasmonic Reflective Filters for Color Generation. ACS APPLIED NANO MATERIALS, v. 3, n. 2, p. 1111-1117, FEB 2020. Web of Science Citations: 0.
BENEVIDES, RODRIGO; MENARD, MICHAEL; WIEDERHECKER, GUSTAVO S.; MAYER ALEGRE, THIAGO P. Ar/Cl-2 etching of GaAs optomechanical microdisks fabricated with positive electroresist. OPTICAL MATERIALS EXPRESS, v. 10, n. 1, p. 57-67, JAN 1 2020. Web of Science Citations: 0.
WIEDERHECKER, GUSTAVO S.; DAINESE, PAULO; MAYER ALEGRE, THIAGO P. Brillouin optomechanics in nanophotonic structures. APL PHOTONICS, v. 4, n. 7 JUL 2019. Web of Science Citations: 2.

Please report errors in scientific publications list by writing to: cdi@fapesp.br.