Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Assessment of molecularly imprinted polymers (MIPs) in the preconcentration of disperse red 73 dye prior to photoelectrocatalytic treatment

Full text
Author(s):
Franco, Jefferson Honorio ; Ben Aissa, Alejandra ; Bessegato, Guilherme Garcia ; Martinez Fajardo, Laura ; Boldrin Zanoni, Maria Valnice ; Isabel Pividori, Maria ; Taboada Sotomayor, Maria Del Pilar
Total Authors: 7
Document type: Journal article
Source: Environmental Science and Pollution Research; v. 24, n. 4, p. 4134-4143, FEB 2017.
Web of Science Citations: 1
Abstract

Magnetic molecularly imprinted polymers (MMIPs) have become a research hotspot due to their two important characteristics: target recognition and magnetic separation. This paper presents the preparation, characterization, and optimization of an MMIP for the preconcentration of disperse red 73 dye (DR73) and its subsequent efficient degradation by photoelectrocatalytic treatment. The MMIPs were characterized by scanning electron microscopy (SEM), which revealed homogeneous distribution of the particles. Excellent encapsulation of magnetite was confirmed by transmission electron microscopy (TEM). A study of dye binding showed that the dye was retainedmore selectively in the MIP, compared to the NIP. The release of DR73 from the imprinted polymers into methanol and acetic acid was analyzed by UV-Vis spectrophotometry. The extracts showed higher absorbance values for MMIP, compared to MNIP, confirming greater adsorption of dye in the MMIP material. The extracts were then subjected to photoelectrocatalytic treatment. LC-MS/MS analysis following this treatment showed that the dye was almost completely degraded. Hence, the combination of MMIP extraction and photoelectrocatalysis offers an alternative way of selectively removing an organic contaminant, prior to proceeding with its complete degradation. (AU)

FAPESP's process: 14/03679-7 - Degradation of hair dyes and salon wastewater by photoelectrocatalysis with modified TiO2 nanotube electrodes and combination with ozonation
Grantee:Guilherme Garcia Bessegato
Support Opportunities: Scholarships in Brazil - Doctorate (Direct)
FAPESP's process: 14/25264-3 - Development and application of new nanoestructurated chemical sensors based on biomimetic polymers
Grantee:Maria Del Pilar Taboada Sotomayor
Support Opportunities: Regular Research Grants