Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

A nonlinear programming model with implicit variables for packing ellipsoids

Full text
Author(s):
Birgin, E. G. ; Lobato, R. D. ; Martinez, J. M.
Total Authors: 3
Document type: Journal article
Source: Journal of Global Optimization; v. 68, n. 3, p. 467-499, JUL 2017.
Web of Science Citations: 5
Abstract

The problem of packing ellipsoids is considered in the present work. Usually, the computational effort associated with numerical optimization methods devoted to packing ellipsoids grows quadratically with respect to the number of ellipsoids being packed. The reason is that the number of variables and constraints of ellipsoids' packing models is associated with the requirement that every pair of ellipsoids must not overlap. As a consequence, it is hard to solve the problem when the number of ellipsoids is large. In this paper, we present a nonlinear programming model for packing ellipsoids that contains a linear number of variables and constraints. The proposed model finds its basis in a transformation-based non-overlapping model recently introduced by Birgin et al. (J Glob Optim 65(4):709-743, 2016). For solving large-sized instances of ellipsoids' packing problems with up to 1000 ellipsoids, a multi-start strategy that combines clever initial random guesses with a state-of-the-art (local) nonlinear optimization solver is presented. Numerical experiments show the efficiency and effectiveness of the proposed model and methodology. (AU)

FAPESP's process: 13/07375-0 - CeMEAI - Center for Mathematical Sciences Applied to Industry
Grantee:José Alberto Cuminato
Support Opportunities: Research Grants - Research, Innovation and Dissemination Centers - RIDC
FAPESP's process: 13/05475-7 - Computational methods in optimization
Grantee:Sandra Augusta Santos
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 10/10133-0 - Cutting, packing, lot-sizing and scheduling problems and their integration in industrial and logistics settings
Grantee:Reinaldo Morabito Neto
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 13/03447-6 - Combinatorial structures, optimization, and algorithms in theoretical Computer Science
Grantee:Carlos Eduardo Ferreira
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 12/23916-8 - Ellipsoid packing
Grantee:Rafael Durbano Lobato
Support Opportunities: Scholarships in Brazil - Doctorate