| Full text | |
| Author(s): |
Bonaldo, Jakson Paulo
[1]
;
De Souza, Vinicius A.
[2]
;
Alonso, Augusto Matheus Dos Santos
[2]
;
Arenas, Luis De Oro
[2]
;
Marafao, Fernando Pinhabel
[2]
;
Paredes, Helmo K. Morales
[2]
Total Authors: 6
|
| Affiliation: | [1] Fed Univ Mato Grosso UFMT, Dept Elect Engn, BR-78060900 Cuiaba - Brazil
[2] Sao Paulo State Univ UNESP, Inst Sci & Technol Sorocaba, BR-18087180 Sorocaba - Brazil
Total Affiliations: 2
|
| Document type: | Journal article |
| Source: | IEEE ACCESS; v. 9, p. 140487-140503, 2021. |
| Web of Science Citations: | 0 |
| Abstract | |
Active and reactive power regulation, unbalanced current compensation, and harmonic current mitigation are the most significant functionalities typically embedded to a three-phase multifunctional grid-connected inverter. However, a vital control feature minimally addressed in the literature is the capability to adjust the grid power factor to the minimum value required by standards or grid codes. Hence, this paper presents an adaptive compensation approach to perform dynamic power factor regulation under varying power demand and unpredictable energy generation, also withstanding non-ideal voltage conditions. To demonstrate such an approach, a global power factor definition is first introduced, being validated upon bidirectional power flow conditions and under unbalanced and distorted voltages. Secondly, a simple algorithm is devised to attain scaling coefficients used on compensation purposes, allowing to instantaneously weigh up reference control signals to track a desired grid-side power factor value. As a result, the strategy can be used to retrofit the controllers of grid-connected inverters with little effort, limiting distribution losses and improving power quality. Simulations and analyses of a representative real study case are conducted to illustrate how the proposed approach copes with unpredictable distributed energy resources and variable load demands. Moreover, experimental results considering a grid-connected inverter prototype are shown to validate the feasibility of the control approach to real-life implementations. (AU) | |
| FAPESP's process: | 19/22304-8 - Design and control methodologies for defining proper power quality interfaces for voltage disturbance compensation |
| Grantee: | Luis Armando de Oro Arenas |
| Support Opportunities: | Scholarships in Brazil - Post-Doctoral |
| FAPESP's process: | 16/08645-9 - Interdisciplinary Research Activities in Electric Smart Grids |
| Grantee: | João Bosco Ribeiro do Val |
| Support Opportunities: | Research Projects - Thematic Grants |
| FAPESP's process: | 17/24652-8 - Development of a Methodology for Cooperative Control of Distributed Generators in Microgrids with Multiple Operational Considerations |
| Grantee: | Augusto Matheus dos Santos Alonso |
| Support Opportunities: | Scholarships in Brazil - Doctorate |
| FAPESP's process: | 17/22629-9 - Development of Compensation Techniques and Methodologies for Power Quality Analysis of Modern Distribution Systems |
| Grantee: | Helmo Kelis Morales Paredes |
| Support Opportunities: | Scholarships abroad - Research |