Advanced search
Start date
Betweenand


Enhancing Hyper-to-Real Space Projections Through Euclidean Norm Meta-heuristic Optimization

Full text
Author(s):
Felix Ribeiro, Luiz Carlos ; Roder, Mateus ; de Rosa, Gustavo H. ; Passos, Leandro A. ; Papa, Joao P.
Total Authors: 5
Document type: Journal article
Source: PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2021; v. 12702, p. 10-pg., 2021-01-01.
Abstract

The continuous computational power growth in the last decades has made solving several optimization problems significant to humankind a tractable task; however, tackling some of them remains a challenge due to the overwhelming amount of candidate solutions to be evaluated, even by using sophisticated algorithms. In such a context, a set of nature-inspired stochastic methods, called meta-heuristic optimization, can provide robust approximate solutions to different kinds of problems with a small computational burden, such as derivative-free real function optimization. Nevertheless, these methods may converge to inadequate solutions if the function landscape is too harsh, e.g., enclosing too many local optima. Previous works addressed this issue by employing a hypercomplex representation of the search space, like quaternions, where the landscape becomes smoother and supposedly easier to optimize. Under this approach, meta-heuristic computations happen in the hypercomplex space, whereas variables are mapped back to the real domain before function evaluation. Despite this latter operation being performed by the Euclidean norm, we have found that after the optimization procedure has finished, it is usually possible to obtain even better solutions by employing the Minkowski p-norm instead and fine-tuning p through an auxiliary sub-problem with neglecting additional cost and no hyperparameters. Such behavior was observed in eight well-established benchmarking functions, thus fostering a new research direction for hypercomplex meta-heuristic optimization. (AU)

FAPESP's process: 19/02205-5 - Adversarial learning in natural language processing
Grantee:Gustavo Henrique de Rosa
Support Opportunities: Scholarships in Brazil - Doctorate
FAPESP's process: 14/12236-1 - AnImaLS: Annotation of Images in Large Scale: what can machines and specialists learn from interaction?
Grantee:Alexandre Xavier Falcão
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 17/25908-6 - Weakly supervised learning for compressed video analysis on retrieval and classification tasks for visual alert
Grantee:João Paulo Papa
Support Opportunities: Research Grants - Research Partnership for Technological Innovation - PITE
FAPESP's process: 19/07665-4 - Center for Artificial Intelligence
Grantee:Fabio Gagliardi Cozman
Support Opportunities: Research Grants - Research Program in eScience and Data Science - Research Centers in Engineering Program
FAPESP's process: 13/07375-0 - CeMEAI - Center for Mathematical Sciences Applied to Industry
Grantee:Francisco Louzada Neto
Support Opportunities: Research Grants - Research, Innovation and Dissemination Centers - RIDC
FAPESP's process: 19/07825-1 - Deep Boltzmann machines for event recognition in videos
Grantee:Mateus Roder
Support Opportunities: Scholarships in Brazil - Master