Advanced search
Start date
Betweenand


Comprehensive Electromechanical Analysis of High-Temperature Low-Sag (HTLS) Conductors

Full text
Author(s):
Asorza, Jesus E. Guevara ; Colqui, Jaimis S. L. ; Pissolato Filho, Jose
Total Authors: 3
Document type: Journal article
Source: IEEE ACCESS; v. 13, p. 11-pg., 2025-01-01.
Abstract

The rising energy consumption in transmission networks has markedly increased the burden on transmission lines, necessitating an expansion in their capacity to accommodate this surge. Consequently, high-temperature low-sag (HTLS) conductors are emerging as substitutes for conventional conductors in recent network upgrades due to their superior power transmission capabilities, especially under elevated temperatures. This paper critically analyzes the feasibility of adopting HTLS conductors over conventional counterparts for future single-circuit overhead transmission lines. Specifically, we evaluate leading HTLS conductors, such as ACCC and ZTACIR, against the conventional AAAC conductor. Following a two-stage methodology, this study presents a comprehensive electromechanical assessment of overhead transmission line. First, ampacity calculations were performed to determine the required conductor cross-sections. Subsequently, mechanical performance was evaluated to quantify structural loads and their impact on tower design. Among the HTLS conductors analyzed, the ACCC exhibited the lowest mechanical loads, indicating a better performance in terms of structural efficiency. ACCC and ZTACIR conductors significantly reduced the weight imposed on transmission towers compared to conventional AAAC, primarily due to their lower tensile forces. Furthermore, our results demonstrate that HTLS conductors present nearly identical electrical parameters across a broad frequency spectrum, conversely to the more variable behavior of conventional alternatives. Based on these results, ACCC conductors are strongly recommended for future projects, pending detailed economic analysis. (AU)

FAPESP's process: 21/11258-5 - Engineering Research Center for the Aerial Mobility of the Future (ERC-AMF)
Grantee:Domingos Alves Rade
Support Opportunities: Research Grants - Applied Research Centers Program
FAPESP's process: 21/06157-5 - Statistical study of overvoltages due to maneuvers in the EAT transmission lines considering the freqency dependence of the electrical parameters of the soil
Grantee:Jaimis Sajid Leon Colqui
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 23/05066-1 - Study of transient overvoltages in underground and submarine transmission lines considering rigorous models for calculating ground-return parameters
Grantee:Jesus Enrique Guevara Asorza
Support Opportunities: Scholarships in Brazil - Master