Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

INTELLIGENT UNDERSTANDING OF USER INTERACTION IN IMAGE SEGMENTATION

Full text
Author(s):
Spina, Thiago V. [1] ; De Miranda, Paulo A. V. [2] ; Falcao, Alexandre X. [1]
Total Authors: 3
Affiliation:
[1] Univ Campinas UNICAMP, Inst Comp, Campinas, SP - Brazil
[2] Univ Sao Paulo, Inst Math & Stat, Dept Comp Sci, Sao Paulo - Brazil
Total Affiliations: 2
Document type: Journal article
Source: INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE; v. 26, n. 2 MAR 2012.
Web of Science Citations: 4
Abstract

We have developed interactive tools for graph-based segmentation of natural images, in which the user guides object delineation by drawing strokes (markers) inside and outside the object. A suitable arc-weight estimation is paramount to minimize user time and maximize segmentation accuracy in these tools. However, it depends on discriminative image properties for object and background. These properties can be obtained from some marker pixels, but their identification is a hard problemduring delineation. Careless arc-weight re-estimation reduces user control and drops performance, while interactive arc-weight estimation in a step before interactive object extraction is the best option so far, albeit it is not intuitive for nonexpert users. We present an effective solution using the unified framework of the image foresting transform (IFT) with three operators: clustering for interpreting user interaction and determining when and where arc weights need to be re-estimated; fuzzy classification for arc-weight estimation; and marker competition based on optimum connectivity for object extraction. For validation, we compared the proposed approach with another interactive IFT-based method, which computes arc weights before extraction. Evaluation involved multiple users (experts and nonexperts), a dataset with several natural images, and measurements to quantify accuracy, precision, efficiency (user time and computation time), and user control, being some of them novel measurements, proposed in this work. (AU)

FAPESP's process: 07/52015-0 - Approximation methods for visual computing
Grantee:Jorge Stolfi
Support type: Research Projects - Thematic Grants
FAPESP's process: 09/16428-4 - Segmentation of human brain structures from magnetic resonance images of multiple modalities
Grantee:Paulo André Vechiatto de Miranda
Support type: Scholarships in Brazil - Post-Doctorate
FAPESP's process: 09/11908-8 - User-steered editing of natural images based on the image foresting transform
Grantee:Thiago Vallin Spina
Support type: Scholarships in Brazil - Master