Advanced search
Start date
Betweenand


Interaction between carbon nanotubes and nanometric and biological systems: experimental and computational insights

Full text
Author(s):
Lilian Maria Pessôa da Cruz Centurion
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Física de São Carlos (IFSC/BT)
Defense date:
Examining board members:
Valtencir Zucolotto; Ronaldo Censi Faria; Renata de Lima; Alessandro Silva Nascimento; Maria Del Pilar Taboada Sotomayor
Advisor: Valtencir Zucolotto
Abstract

This thesis describes the interaction between carbon nanotubes and nanomaterials, biomolecules and cells, to obtain relevant information for the development of biosensors and the progress of the nanotoxicology field. In a first study, we produced and characterized three types of modified electrodes made from layer-by-layer films. These nanostructures had single-walled carbon nanotubes (SWNT), nickel tetrasulfonated phthalocyanine (NiTsPc) and poly(amidoamine) dendrimer, generation 2 (PAMAM G2). These polyelectrolytes were organized in the following multilayers: (PAMAM G2/NiTsPc), (PAMAM G2/SWNT) and (SWNT/PAMAM G2 nanocomposite / NiTsPc). Cyclic voltammetry measurements with a potassium ferrocyanide probe revealed that the three systems can be used as disposable electrodes for being unstable and that the two systems with NiTsPc exhibit a wide useful potential interval for detection without the interference of the Pc redox peaks. We also performed flow cytometry experiments to evaluate the toxicity of nanocomposites containing carbon nanotubes and poly(amidoamine) generations 2, 4 and 6 in F C3H cells, derived from healthy human liver fibroblasts. The results showed that the contact with these nanomaterials decreases the viability of this type of cell and point to the need to further determine the biological effects of this nanocomposite before it can be safely applied as a vector for drugs and genetic material. The last part of the thesis explores computational tools to unravel the mechanisms behind the formation of the nanocomposite SWNT/PAMAM G2 and its interaction with cell membrane models. Molecular dynamics simulations revealed that the stability of the nanocomposite is kept mainly by interactions between the apolar nanotube walls and the inner non polar chains of the dendrimer. The study involving lipid bilayers suggested that the presence of anionic species, such as phosphatidylserines, is crucial to trigger the binding of this nanoparticle to the cell membrane. The contact of the nanocomposite with the bilayer resulted in the destructive extraction of lipids from the membrane, an effect that ultimately causes cell damage. (AU)

FAPESP's process: 10/08242-5 - Interaction between carbon nanotubes and nanometric and biological systems: experimental and computational insights
Grantee:Lilian Maria Pessôa da Cruz Centurion
Support Opportunities: Scholarships in Brazil - Doctorate