Advanced search
Start date

Desenvolvimento, avaliação da segurança e eficácia clínica de sistemas nanoparticulados de gelatina contendo rutina.

Full text
Camila Areias de Oliveira
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
André Rolim Baby; Maria Teresa Junqueira Garcia
Advisor: André Rolim Baby

Especially, in the last decade, the association of chemical filters and bioactive compounds has been studied by several authors. However, the limited solubility of natural compounds, such as rutin restricts the development of safe and stable cosmetic preparations. The aim of this work was the development of gelatin nanoparticles (with or without rutin) as an ingredient in sunscreens. The specific goals were: (1) the development of rutin-loaded gelatin nanoparticles; (2) to perform the physical, physical-chemical, morphological, thermal and functional (in vitro) analysis; (3) to assess the cytotoxicity and skin penetration / permeation in vitro of the nanoparticles; (4) to develop bioactive sunscreens and to perform the in vitro photoprotection efficacy assay; and (5) to evaluate the in vivo sun protection factor (SPF) of the formulations. The nanoparticles were spherical with an average size and polydispersive index between 318.9 ± 6.9 nm (B-NC) at 442.8 nm ± 4.9 (R-NC), and 0.06 ± 0, 03 (B-NC) to 0.12 ± 0.01 (R-NC). The zeta potential values were high and negative, ranging from - 28.5 ± 0.9 mV (B-NC) and -26.6 ± 0.5 mV (R-NC). R-NC entrapment efficient was 51.8 ± 1.4%. The nanoparticle safety assessment showed a cytotoxic profile suitable for cosmetic application, as well as the absent trend of penetration/ permeation of the skin. The in vitro results indicated that the rutin-loaded gelatin nanoparticles increased 74% the antioxidant profile in comparison with free rutin and also increased 48% the SPF (in vitro) when combined with butyl methoxydibenzoylmethane, ethylhexyl methoxycinnamate and ethylhexyl dimethyl PABA. The assessment of the clinical efficacy assays showed the influence of blank nanoparticle in the protection of the skin against UV-induced erythema response. It was established in vitro and in vivo that the addition of gelatin nanoparticles in sunscreens influenced its UV transmittance profile, as well as its anti-erythema effects on the skin. The results have practical application in the development of sunscreen with bioactive ingredients and at the design of an innovative ingredient with a chemopreventive profile. (AU)

FAPESP's process: 12/19972-0 - Technological development, safety assessment and clinical effectiveness of rutin-loaded gelatin micro/nanoparticles
Grantee:Camila Areias de Oliveira
Support Opportunities: Scholarships in Brazil - Doctorate (Direct)