Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

A nature-inspired feature selection approach based on hypercomplex information

Full text
Author(s):
de Rosa, Gustavo H. [1] ; Papa, Joao P. [1] ; Yang, Xin-She [2]
Total Authors: 3
Affiliation:
[1] Sao Paulo State Univ, Dept Comp, Ave Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP - Brazil
[2] Middlesex Univ, Sch Sci & Technol, London NW4 4BT - England
Total Affiliations: 2
Document type: Journal article
Source: APPLIED SOFT COMPUTING; v. 94, SEP 2020.
Web of Science Citations: 0
Abstract

Feature selection for a given model can be transformed into an optimization task. The essential idea behind it is to find the most suitable subset of features according to some criterion. Nature-inspired optimization can mitigate this problem by producing compelling yet straightforward solutions when dealing with complicated fitness functions. Additionally, new mathematical representations, such as quaternions and octonions, are being used to handle higher-dimensional spaces. In this context, we are introducing a meta-heuristic optimization framework in a hypercomplex-based feature selection, where hypercomplex numbers are mapped to real-valued solutions and then transferred onto a boolean hypercube by a sigmoid function. The intended hypercomplex feature selection is tested for several meta-heuristic algorithms and hypercomplex representations, achieving results comparable to some state-of-the-art approaches. The good results achieved by the proposed approach make it a promising tool amongst feature selection research. (C) 2020 Elsevier B.V. All rights reserved. (AU)

FAPESP's process: 13/07375-0 - CeMEAI - Center for Mathematical Sciences Applied to Industry
Grantee:Francisco Louzada Neto
Support Opportunities: Research Grants - Research, Innovation and Dissemination Centers - RIDC
FAPESP's process: 16/19403-6 - Energy-based learning models and their applications
Grantee:João Paulo Papa
Support Opportunities: Regular Research Grants
FAPESP's process: 14/12236-1 - AnImaLS: Annotation of Images in Large Scale: what can machines and specialists learn from interaction?
Grantee:Alexandre Xavier Falcão
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 17/25908-6 - Weakly supervised learning for compressed video analysis on retrieval and classification tasks for visual alert
Grantee:João Paulo Papa
Support Opportunities: Research Grants - Research Partnership for Technological Innovation - PITE
FAPESP's process: 17/02286-0 - Probabilistic models for commercial losses detection
Grantee:André Nunes de Souza
Support Opportunities: Regular Research Grants
FAPESP's process: 19/02205-5 - Adversarial learning in natural language processing
Grantee:Gustavo Henrique de Rosa
Support Opportunities: Scholarships in Brazil - Doctorate