Advanced search
Start date

Global dynamics of nonsmooth differential equations


This project concerns on global aspects of nonsmooth differential equations, Lipschitz continuous and discontinuous. It is divided in 3 main subjects: Bifurcation of Limit Cycles, Bifurcation of Invariant Tori and Shilnikov Connections in Filippov Systems. Each subject presents several subprojects, which are concerned on distinct topics such as: averaging theory and Melnikov functions, tangential polycycles, Hopf and Neimark-Sacker bifurcation, KAM theory, Shilnikov connections and chaos in real models, and regularization of Filippov systems. (AU)

Articles published in Agência FAPESP Newsletter about the research grant:
Articles published in other media outlets (0 total):
More itemsLess items

Scientific publications (14)
(References retrieved automatically from Web of Science and SciELO through information on FAPESP grants and their corresponding numbers as mentioned in the publications by the authors)
CARMONA, VICTORIANO; FERNANDEZ-SANCHEZ, FERNANDO; NOVAES, DOUGLAS D.. A new simple proof for Lum-Chua's conjecture. NONLINEAR ANALYSIS-HYBRID SYSTEMS, v. 40, . (18/13481-0, 18/16430-8, 19/10269-3)
CANDIDO, MURILO R.; NOVAES, DOUGLAS D.; VALLS, CLAUDIA. Periodic solutions and invariant torus in the Rossler system. Nonlinearity, v. 33, n. 9, . (19/05657-4, 19/10269-3, 18/07344-0, 18/16430-8)
CASTRO, MATHEUS M.; MARTINS, RICARDO M.; NOVAES, DOUGLAS D.. Anote on Vishik's normal form. Journal of Differential Equations, v. 281, p. 442-458, . (18/03338-6, 18/16430-8, 19/10269-3, 19/06873-2, 18/13481-0, 17/23692-6)
CARDIN, PEDRO TONIOL; NOVAES, DOUGLAS DUARTE. Asymptotic behavior of periodic solutions in one-parameter families of Lienard equations. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, v. 190, . (19/00976-4, 18/13481-0, 19/10269-3, 13/24541-0, 18/16430-8)
NOVAES, DOUGLAS D.; SILVA, LEANDRO A.. Lyapunov coefficients for monodromic tangential singularities in Filippov vector fields. Journal of Differential Equations, v. 300, p. 565-596, . (19/10269-3, 18/13481-0, 18/16430-8)
CANDIDO, MURILO R.; NOVAES, DOUGLAS D.. On the torus bifurcation in averaging theory. Journal of Differential Equations, v. 268, n. 8, p. 4555-4576, . (18/07344-0, 19/05657-4, 18/16430-8, 18/13481-0, 19/10269-3)
CARDOSO, JOAO L.; LLIBRE, JAUME; NOVAES, DOUGLAS D.; TONON, DURVAL J.. Simultaneous occurrence of sliding and crossing limit cycles in piecewise linear planar vector fields. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, v. 35, n. 3, . (18/16430-8, 18/13481-0, 19/10269-3)
NOVAES, DOUGLAS D.. Higher order stroboscopic averaged functions: a general relationship with Melnikov functions. Electronic Journal of Qualitative Theory of Differential Equations, n. 77, . (18/16430-8, 18/13481-0, 19/10269-3)
CARVALHO, TIAGO; NOVAES, DOUGLAS DUARTE; GONCALVES, LUIZ FERNANDO. Sliding Shilnikov connection in Filippov-type predator-prey model. NONLINEAR DYNAMICS, v. 100, n. 3, . (17/00883-0, 19/10450-0, 18/16430-8, 18/13481-0, 19/10269-3)
NOVAES, DOUGLAS D.; RONDON, GABRIEL. Smoothing of nonsmooth differential systems near regular-tangential singularities and boundary limit cycles. Nonlinearity, v. 34, n. 6, p. 4202-4263, . (18/13481-0, 20/06708-9, 18/16430-8, 19/10269-3)
BASTOS, JEFFERSON L. R.; BUZZI, CLAUDIO A.; LLIBRE, JAUME; NOVAES, DOUGLAS D.. Melnikov analysis in nonsmooth differential systems with nonlinear switching manifold. Journal of Differential Equations, v. 267, n. 6, p. 3748-3767, . (16/11471-2, 18/16430-8, 13/24541-0)
LLIBRE, JAUME; NOVAES, DOUGLAS D.; ZELI, IRIS O.. Limit cycles of piecewise polynomial perturbations of higher dimensional linear differential systems. REVISTA MATEMATICA IBEROAMERICANA, v. 36, n. 1, p. 291-318, . (18/13481-0, 18/16430-8, 19/10269-3, 13/21078-8)
LLIBRE, JAUME; NOVAES, DOUGLAS D.; RODRIGUES, CAMILA A. B.. Bifurcations from families of periodic solutions in piecewise differential systems. PHYSICA D-NONLINEAR PHENOMENA, v. 404, . (18/16430-8, 18/13481-0, 19/10269-3)
NOVAES, DOUGLAS D.; TEIXEIRA, MARCO A.. Shilnikov problem in Filippov dynamical systems. Chaos, v. 29, n. 6, . (18/16430-8)

Please report errors in scientific publications list by writing to: