Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Simple, Expendable, 3D-Printed Microfluidic Systems for Sample Preparation of Petroleum

Full text
Author(s):
Kataoka, Erica M. ; Murer, Rui C. ; Santos, Jandyson M. ; Carvalho, Rogerio M. ; Eberlin, Marcos N. ; Augusto, Fabio ; Poppi, Ronei J. ; Gobbi, Angelo L. ; Hantao, Leandro W.
Total Authors: 9
Document type: Journal article
Source: Analytical Chemistry; v. 89, n. 6, p. 3460-3467, MAR 21 2017.
Web of Science Citations: 27
Abstract

In this study, we introduce a simple protocol to manufacture disposable, 3D-printed microfluidic systems for sample preparation of petroleum. This platform is produced. with a consumer-grade 3D-printer, using fused deposition modeling. Successful incorporation of solid-phase extraction (SPE) to microchip was ensured by facile 3D element integration using proposed approach. This 3D-printed piSPE device was applied to challenging matrices in oil and gas industry, such as crude oil and oil brine emulsions. Case studies investigated important limitations of nonsilicon and nonglass microchips, namely, resistance to nonpolar solvents and conservation of sample integrity. Microfluidic features remained fully functional even after prolonged exposure to nonpolar solvents (20 min). Also, 3D-printed liSPE devices enabled fast emulsion breaking and solvent deasphalting of petroleum, yielding high recovery values (98%) without compromising maltene integrity. Such finding was ascertained by high-resolution molecular analyses using comprehensive two-dimensional gas chromatography and gas chromatography/mass spectrometry by monitoring important biomarker classes, such as C10 demethylated terpanes, aaa-steranes, and monoaromatic steroids. 3D-Printed chips enabled faster and reliable preparation of maltenes by exhibiting a 10-fold reduction in sample processing time, compared to the reference method. Furthermore, polar (oxygen-, nitrogen-,-and sulfur-containing) analytes found in low-concentrations were analyzed by Fourier transform ion cyclotron resonance mass spectrometry. Analysis results demonstrated that accurate characterization may be accomplished for most classes of polar compounds, except for asphaltenes, which exhibited lower recoveries (82%) due to irreversible adsorption to sorbent phase. Therefore, 3D-printing is a compelling alternative to existing microfabrication solutions, as robust devices were easy to prepare and operate. (AU)

FAPESP's process: 13/19161-4 - Petroleomics by FT-MS: New Strategies for Characterization by Pre-fractionation of contaminated and emulsified oils
Grantee:Jandyson Machado Santos
Support Opportunities: Scholarships in Brazil - Doctorate
FAPESP's process: 15/05059-9 - Development and evaluation of Consumable-free planar microfluidic modulators for comprehensive two-dimensional gas chromatography
Grantee:Leandro Wang Hantao
Support Opportunities: Regular Research Grants
FAPESP's process: 14/00228-4 - Myology of the shoulder, arm, forearm in paca (Cuniculus paca, L.1766)
Grantee:Juliana Aparecida Do Carmo Emidio e Silva
Support Opportunities: Scholarships in Brazil - Scientific Initiation