| Full text | |
| Author(s): |
Ludmilla R. Jorge
[1]
;
Liliam K. Harada
[2]
;
Erica C. Silva
[3]
;
Welida F. Campos
[4]
;
José M. Oliveira Jr.
[5]
;
Marta M. D. C. Vila
[6]
;
Matthieu Tubino
[7]
;
Victor M. Balcão
Total Authors: 8
|
| Affiliation: | [1] Universidade de Sorocaba. PhageLab - Laboratório de Biofilmes e Bacteriófagos - Brasil
[2] Universidade de Sorocaba. PhageLab - Laboratório de Biofilmes e Bacteriófagos - Brasil
[3] Universidade de Sorocaba. PhageLab - Laboratório de Biofilmes e Bacteriófagos - Brasil
[4] Universidade de Sorocaba. PhageLab - Laboratório de Biofilmes e Bacteriófagos - Brasil
[5] Universidade de Sorocaba. PhageLab - Laboratório de Biofilmes e Bacteriófagos - Brasil
[6] Universidade de Sorocaba. PhageLab - Laboratório de Biofilmes e Bacteriófagos - Brasil
[7] Universidade Estadual de Campinas. Instituto de Química - Brasil
Total Affiliations: 8
|
| Document type: | Journal article |
| Source: | Química Nova; v. 43, n. 5, p. 572-578, 2020-06-29. |
| Abstract | |
Production of bacterial nanocellulose was pursued as a matrix system for the stabilization of human insulin. The biomembranes produced by Gluconacetobacter hansenii were washed with 2% aqueous sodium dodecylsulfate solution, rinsed with ultrapure water and immersed in 1 mol L-1 NaOH aqueous solution at 60 °C for 90 min until neutralization. For the insulin adsorption assays, the biomembranes were soaked in a buffered solution of human insulin until no protein could be detected in the supernatant. The membranes with adsorbed insulin were characterized via mechanical resistance (resilience, relaxation, perforation), Differential Scanning Calorimetry (DSC), Thermal Gravimetrical Analysis (TGA), Fourier Transform Infrared Spectrophotometry (FTIR), X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) analyses. The FESEM photomicrographs of the surface of the biomembranes showed a rugged surface without cracks. The biomembranes exhibited adequate mechanical characteristics. The infrared spectra indicated that the chemical aspect of the protein moiety was preserved during adsorption onto the BNC biomembranes. According to the XRD analyses, the biomembranes showed a generalized amorphous behavior. Thermal analyses indicated an adequate thermal stability for a pharmaceuticals product. Hence, an elastic and malleable biomembrane was produced, suitable for incorporation of human insulin, aiming at transdermal delivery. (AU) | |
| FAPESP's process: | 16/12234-4 - TransAppIL - Transdermal delivery of structurally and functionally stabilized protein entities applying ionic liquids. |
| Grantee: | Marta Maria Duarte Carvalho Vila |
| Support Opportunities: | Regular Research Grants |
| FAPESP's process: | 16/08884-3 - PneumoPhageColor - development of a colorimetric biodetection kit for Pseudomonas aeruginosa based on phage particles |
| Grantee: | Vitor Manuel Cardoso Figueiredo Balcão |
| Support Opportunities: | Regular Research Grants |
| FAPESP's process: | 16/16641-3 - Structural and functional stabilization of sericin in a biopolysaccharide hydrogel: bio-origami for skin regeneration |
| Grantee: | Liliam Katsue Harada Rocha |
| Support Opportunities: | Scholarships in Brazil - Master |
| FAPESP's process: | 18/05522-9 - PsaPhageKill - isolation, characterisation and use of lytic bacteriophages against Pseudomonas syringae PV. actinidiae to fight the cancer of kiwifruit: an efficient and ecofriendly alternative |
| Grantee: | Vitor Manuel Cardoso Figueiredo Balcão |
| Support Opportunities: | Scholarships abroad - Research |