Resumo
O projeto de pesquisa propõe dar continuidade à investigação das interações entre teoria de grupos e álgebra não comutativa, bem como algumas de suas aplicações, especialmente às ações parciais de grupos sobre anéis e à teoria de códigos corretores de erros. O grupo vem trabalhando nessa direção há bastante tempo e já obteve resultados expressivos, frequentemente citados na literatura. Os assuntos que serão objetos de pesquisa no período são, entre outros: estrutura do grupo das unidades de um anel de grupo, determinando geradores do complemento livre, para grupos abelianos finitos, e pares de geradores livres, no caso geral. Também se estudarão elementos simétricos e antissimétricos de uma álgebra de grupo. A estrutura do grupo das unidades de um anel com divisão e a existência de pares livres de tipos especiais. Estudo de globalizações de ações parciais, produtos cruzados generalizados, isomorfismo de álgebras de grupo parciais, ações e coações parciais de álgebras de Hopf, representações parciais projetivas e co-homológica baseadas nas ações parciais. Estudo da teoria de códigos cíclicos, abelianos, metacíclicos, etc., utilizando técnicas próprias da teoria de álgebras de grupo finitas. (AU)
| Matéria(s) publicada(s) na Agência FAPESP sobre o auxílio: |
| Mais itensMenos itens |
| TITULO |
| Matéria(s) publicada(s) em Outras Mídias ( ): |
| Mais itensMenos itens |
| VEICULO: TITULO (DATA) |
| VEICULO: TITULO (DATA) |