Advanced search
Start date
Betweenand

Harmonic analysis, approximation theory and applications

Grant number:16/09906-0
Support Opportunities:Research Projects - Thematic Grants
Start date: December 01, 2016
End date: November 30, 2021
Field of knowledge:Physical Sciences and Mathematics - Mathematics - Applied Mathematics
Principal Investigator:Dimitar Kolev Dimitrov
Grantee:Dimitar Kolev Dimitrov
Host Institution: Instituto de Biociências, Letras e Ciências Exatas (IBILCE). Universidade Estadual Paulista (UNESP). Campus de São José do Rio Preto. São José do Rio Preto , SP, Brazil
City of the host institution:São José do Rio Preto
Principal investigatorsAlagacone Sri Ranga ; Valdir Antonio Menegatto
Associated researchers:Ana Paula Peron ; Cleonice Fátima Bracciali ; Thaís Jordão
Associated research grant(s):19/12413-4 - Topics in analysis and analytic number theory, AV.EXT
17/02061-8 - Heine-Stieltjes theory and electrostatics, AV.EXT
Associated scholarship(s):21/13340-0 - Topic in classical analysis and approximation theory, BE.PQ
18/00396-5 - Polynomials obtained from a recurrence relation which is a modification of the recurrence relation satisfied by orthogonal polynomials, BP.IC
17/21605-9 - Orthogonal polynomials and differential equations, BP.IC
+ associated scholarships 17/07442-0 - K-functionals of fractional orders and moduli of smoothness on a general setting, BE.PQ
17/15223-6 - The Laguerre-Pólya class theory of functions and applications in the Analytic Number Theory, BP.PD
17/04358-8 - Applications of functions satisfying certain recurrence relations, BP.DD - associated scholarships

Abstract

The principal objectives of this project are to study themes related to Harmonic Analysis, Approximation Theory and Special Functions and their Applications. Harmonic Analysis is a cornerstone of Analysis. The solutions of the principal partial differential equation are generally represented by convolutions and these representations are obtained via an application of the Fourier transform. Approximation Theory deals with fundamental questions as density of subspaces of a metric space and approximations of functions and functionals of a rather complex nature by simpler objects. The Theory of Special Functions is fundamental to describe quantitative properties of solutions of differential equations. The research in these areas and the connection between them facilitates the understanding of processes in nature and possesses various applications in other areas of Mathematics, and in Physics and Engineering. (AU)

Articles published in Agência FAPESP Newsletter about the research grant:
More itemsLess items
Articles published in other media outlets ( ):
More itemsLess items
VEICULO: TITULO (DATA)
VEICULO: TITULO (DATA)

Scientific publications (35)
(References retrieved automatically from Web of Science and SciELO through information on FAPESP grants and their corresponding numbers as mentioned in the publications by the authors)
MARTINEZ-FINKELSHTEIN, A.; SILVA RIBEIRO, L. L.; SRI RANGA, A.; TYAGLOV, M.. COMPLEMENTARY ROMANOVSKI-ROUTH POLYNOMIALS: FROM ORTHOGONAL POLYNOMIALS ON THE UNIT CIRCLE TO COULOMB WAVE FUNCTIONS. Proceedings of the American Mathematical Society, v. 147, n. 6, p. 2625-2640, . (17/12324-6, 16/09906-0, 17/04358-8)
CASTRO, MARIO H.; JORDAO, THAIS; PERON, ANA P.. Super-exponential decay rates for eigenvalues and singular values of integral operators on the sphere. Journal of Computational and Applied Mathematics, v. 364, . (16/09906-0, 16/02847-9, 17/07442-0)
BORREGO-MORELL, JORGE A.; BRACCIALI, CLEONICE F.; RANGA, ALAGACONE SRI. On an Energy-Dependent Quantum System with Solutions in Terms of a Class of Hypergeometric Para-Orthogonal Polynomials on the Unit Circle. MATHEMATICS, v. 8, n. 7, . (16/09906-0)
BISSIRI, PIER GIOVANNI; MENEGATTO, VALDIR A.; PORCU, EMILIO. Relations between Schoenberg Coefficients on Real and Complex Spheres of Different Dimensions. Symmetry Integrability and Geometry-Methods and Applications, v. 15, . (16/09906-0)
GUELLA, J. C.; MENEGATTO, V. A.. A LIMIT FORMULA FOR SEMIGROUPS DEFINED BY FOURIER-JACOBI SERIES. Proceedings of the American Mathematical Society, v. 146, n. 5, p. 2027-2038, . (16/09906-0)
BRACCIALI, C. F.; MARTINEZ-FINKELSHTEIN, A.; SRI RANGA, A.; VERONESE, D. O.. Christoffel formula for kernel polynomials on the unit circle. Journal of Approximation Theory, v. 235, p. 46-73, . (17/12324-6, 16/09906-0)
BONFIM, RAFAELA N.; GUELLA, JEAN C.; MENEGATTO, VALDIR A.. Strictly Positive Definite Functions on Compact Two-Point Homogeneous Spaces: the Product Alternative. Symmetry Integrability and Geometry-Methods and Applications, v. 14, . (16/09906-0, 14/14380-2)
PERON, ANA; PORCU, EMILIO; EMERY, XAVIER. Admissible nested covariance models over spheres cross time. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, v. 32, n. 11, p. 3053-3066, . (16/03015-7, 16/09906-0)
OLIVEIRA, WILLIAN D.. Zeros of Dirichlet polynomials via a density criterion. JOURNAL OF NUMBER THEORY, v. 203, p. 80-94, . (13/14881-9, 17/15223-6, 16/09906-0)
BRACCIALI, CLEONICE F.; PEREIRA, JUNIOR A.; RANGA, A. SRI. Quadrature rules from a R-II type recurrence relation and associated quadrature rules on the unit circle. NUMERICAL ALGORITHMS, v. 83, n. 3, p. 1029-1061, . (17/12324-6, 16/09906-0)
MARTINEZ-FINKELSHTEIN, A.; SILVA RIBEIR, L. L.; SRI RANGA, A.; TYAGLOV, M.. Complementary Romanovski-Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions. Results in Mathematics, v. 75, n. 1, . (16/09906-0, 17/04358-8)
BERG, CHRISTIAN; PERON, ANA P.; PORCU, EMILIO. Schoenberg's theorem for real and complex Hilbert spheres revisited. Journal of Approximation Theory, v. 228, p. 58-78, . (16/03015-7, 14/25796-5, 16/09906-0)
BRACCIALI, CLEONICE F.; DA SILVA, V, JESSICA; RANGA, A. SRI. A class of Sobolev orthogonal polynomials on the unit circle and associated continuous dual Hahn polynomials: Bounds, asymptotics and zeros. Journal of Approximation Theory, v. 268, . (20/14244-2, 16/09906-0)
DIMITROV, DIMITAR K.; SHAPIRO, BORIS. Electrostatic Problems with a Rational Constraint and Degenerate Lame Equations. POTENTIAL ANALYSIS, v. 52, n. 4, p. 645-659, . (16/09906-0, 17/02061-8)
BRACCIALI, CLEONICE F.; PEREZ, TERESA E.. Mixed orthogonality on the unit ball. COMPUTATIONAL & APPLIED MATHEMATICS, v. 40, n. 8, . (16/09906-0)
DIMITROV, DIMITAR K.; GADJEV, IVAN; ISMAIL, MOURAD E. H.. Sharp Hardy's inequalities in Hilbert spaces. JOURNAL OF SPECTRAL THEORY, v. 14, n. 3, p. 14-pg., . (21/13340-0, 16/09906-0)
DIMITROV, DIMITAR K.; XU, YUAN. WRONSKIANS OF FOURIER AND LAPLACE TRANSFORMS. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, v. 372, n. 6, p. 4107-4125, . (16/09906-0, 14/08328-8)
CASTRO, MARIO H.; MASSA, EUGENIO; PERON, ANA PAULA. Characterization of Strict Positive Definiteness on products of complex spheres. POSITIVITY, v. 23, n. 4, p. 853-874, . (16/03015-7, 14/25796-5, 14/25398-0, 16/09906-0)
JORDAO, THAIS; MENEGATTO, VALDIR A.. Kolmogorov Widths on the Sphere via Eigenvalue Estimates for Holderian Integral Operators. Results in Mathematics, v. 74, n. 2, . (16/09906-0, 16/02847-9)
GUELLA, JEAN CARLO; MENEGATTO, VALDIR ANTONIO; PORCU, EMILIO. Strictly positive definite multivariate covariance functions on spheres. JOURNAL OF MULTIVARIATE ANALYSIS, v. 166, p. 150-159, . (16/09906-0)
DIMITROV, DIMITAR K.; OLIVEIRA, WILLIAN D.. Sign regularity of Maclaurin coefficients of functions in the Laguerre-Polya class. JOURNAL D ANALYSE MATHEMATIQUE, v. 137, n. 2, p. 897-911, . (13/14881-9, 16/09906-0)
BRACCIALI, CLEONICE F.; SILVA, JAIRO S.; RANGA, A. SRI. Extended Relativistic Toda Lattice, L-Orthogonal Polynomials and Associated Lax Pair. ACTA APPLICANDAE MATHEMATICAE, v. 164, n. 1, p. 137-154, . (17/12324-6, 16/09906-0)
MARCELLAN, F.; RANGA, A. SRI. Sobolev Orthogonal Polynomials on the Unit Circle and Coherent Pairs of Measures of the Second Kind. Results in Mathematics, v. 71, n. 3-4, p. 1127-1149, . (16/09906-0)
GUELLA, J. C.; MENEGATTO, V. A.. Positive definite matrix functions on spheres defined by hypergeometric functions. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, v. 30, n. 10, . (16/09906-0)
GUELLA, J. C.; MENEGATTO, V. A.. Unitarily invariant strictly positive definite kernels on spheres. POSITIVITY, v. 22, n. 1, p. 91-103, . (16/09906-0)
ISMAIL, M. E. H.; SRI RANGA, A.. R-II type recurrence, generalized eigenvalue problem and orthogonal polynomials on the unit circle. Linear Algebra and its Applications, v. 562, p. 63-90, . (17/12324-6, 16/09906-0)
MENEGATTO, V. A.; OLIVEIRA, C. P.. Positive Definiteness on Products of Compact Two-point Homogeneous Spaces and Locally Compact Abelian Groups. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, v. 63, n. 4, p. 705-715, . (16/09906-0)
RIBEIRO, LUANAL. SILVA; RANGA, A. SRI. A modified least squares method: Approximations on the unit circle and on (-1,1). Journal of Computational and Applied Mathematics, v. 410, p. 19-pg., . (17/04358-8, 20/14244-2, 16/09906-0)
GUELLA, J. C.; MENEGATTO, V. A.. Schoenberg's Theorem for Positive Definite Functions on Products: A Unifying Framework. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, v. 25, n. 4, p. 1424-1446, . (16/09906-0)
BISSIRI, PIER GIOVANNI; PERON, ANA PAULA; PORCU, EMILIO. Strict positive definiteness under axial symmetry on the sphere. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, v. 34, n. 5, . (16/09906-0)
DIMITROV, DIMITAR K.; PEIXOTO, LOURENCO L.. AN EFFICIENT ALGORITHM FOR THE CLASSICAL LEAST SQUARES APPROXIMATION. SIAM JOURNAL ON SCIENTIFIC COMPUTING, v. 42, n. 5, p. A3233-A3249, . (16/09906-0)
CHIRRE, ANDRES; DIMITROV, DIMITAR K.; QUESADA-HERRERA, EMILY; SOUSA, MATEUS. AN EXTREMAL PROBLEM AND INEQUALITIES FOR ENTIRE FUNCTIONS OF EXPONENTIAL TYPE. Proceedings of the American Mathematical Society, v. 152, n. 8, p. 20-pg., . (21/13340-0, 16/09906-0, 19/12413-4)
DIMITROV, DIMITAR K.; GADJEV, IVAN; NIKOLOV, GENO; ULUCHEV, RUMEN. HARDY'S INEQUALITIES IN FINITE DIMENSIONAL HILBERT SPACES. Proceedings of the American Mathematical Society, v. 149, n. 6, p. 15-pg., . (16/10357-1, 16/09906-0)
DIMITROV, DIMITAR K.; NIKOLOV, GENO P.. A discrete weighted Markov-Bernstein inequality for sequences and polynomials. Journal of Mathematical Analysis and Applications, v. 493, n. 1, . (16/10357-1, 16/09906-0)
MARCATO, GUSTAVO; RANGA, A. SRI; LUN, YEN CHI. PARAMETERS OF A POSITIVE CHAIN SEQUENCE ASSOCIATED WITH ORTHOGONAL POLYNOMIALS. Proceedings of the American Mathematical Society, v. 150, n. 6, p. 15-pg., . (20/14244-2, 16/09906-0)