Advanced search
Start date
Betweenand


Lutein bioaccessibility in casein-stabilized emulsions is influenced by the free to acylated carotenoid ratio, but not by the casein aggregation state

Full text
Author(s):
Mantovani, Raphaela A. ; Xavier, Ana Augusta O. ; Tavares, Guilherme M. ; Mercadante, Adriana Z.
Total Authors: 4
Document type: Journal article
Source: Food Research International; v. 161, p. 15-pg., 2022-08-27.
Abstract

Considering that carotenoids are found acylated to fatty acids in most edible fruits, the influence of the ratio of free to acylated lutein on the hydrolysis extent and bioaccessibility was evaluated by in vitro digestion. For this purpose, for the first time, esterified, free, or a mixture of both carotenoid forms was used in the lipid phase of emulsions stabilized by sodium caseinate (NaCas) and native phosphocaseinate (PPCN). Marigold petals was used as a source of lutein-rich extracts. The emulsions were characterized and the extent of ester hydrolysis, carotenoid recovery, and bioaccessibility were evaluated by LC-DAD-MS/MS. Besides low polydispersity, NaCas and PPCN stabilized emulsions exhibited a constant mean droplet diameter of about 260 and 330 nm, respectively, after 7 days. Caseins were completely digested after the gastric digestion step. Moreover, casein supramolecular structure did not significantly affect carotenoid bioaccessibility. Lutein was majorly found in its free form in all bioaccessible fractions. The carotenoid bioaccessibility increased from 3% to 40% by increasing the percentage of free carotenoids from 0.5 to 100% in the emulsions; but the carotenoid recovery and hydrolysis extent of lutein esters were not affected. In conclusion, emulsion-based systems for carotenoid delivery stabilized either by NaCas or PPCN provided similar carotenoid bioaccessibility. Furthermore, bioaccessibility was inversely dependent on the overall hydrophobicity of the carotenoid extract. Our results suggest that the low bioaccessibility of esterified carotenoids was a consequence of their limited hydrolysis extent. This study provides information that may help design emulsion-based systems stabilized by food protein as a vehicle for carotenoids. (AU)

FAPESP's process: 14/14457-5 - Lipid-based nanocarriers (SLN/NLC and remote-loading liposomes) used to improve the upload and potency of local anesthetics
Grantee:Eneida de Paula
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 17/09214-4 - How do structural changes of dairy proteins affect the functionality of bioactive compounds in complex food matrices?
Grantee:Guilherme Miranda Tavares
Support Opportunities: Research Grants - Young Investigators Grants
FAPESP's process: 17/26237-8 - Understanding how protein-carotenoid interactions influence emulsion stability and carotenoid bioacessibility
Grantee:Raphaela de Araujo Mantovani
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 13/07914-8 - FoRC - Food Research Center
Grantee:Bernadette Dora Gombossy de Melo Franco
Support Opportunities: Research Grants - Research, Innovation and Dissemination Centers - RIDC
FAPESP's process: 18/23752-1 - Multi0user equipment approved in grant 2013/07914-8: high-speed liquid chromatography coupled to arrangement of diodes, fluorescence and masses
Grantee:Adriana Zerlotti Mercadante
Support Opportunities: Multi-user Equipment Program